The research activities focus on the design, development, and testing of novel models and algorithms for multisensory learning and cross-modal integration for human behavior understanding. The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

Long-term understanding of human behavior with first person vision

Long-term understanding of human behavior with first person vision

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.

Multimodal learning for human behavior understanding

Multimodal learning for human behavior understanding

The research focuses on the design, development, and benchmarking of AI algorithms to extract semantic information from video acquired from an egocentric perspective. The aim is to build capabilities for novel wearable artificial agents to support humans in daily activities understanding the scene observed by a human which wear an always-on first person camera.